Fermionic coherent states for pseudo-Hermitian two-level systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 J. Phys. A: Math. Theor. 401835
(http://iopscience.iop.org/1751-8121/40/8/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.147
The article was downloaded on 03/06/2010 at 06:33

Please note that terms and conditions apply.

Fermionic coherent states for pseudo-Hermitian two-level systems

O Cherbal ${ }^{1}$, M Drir ${ }^{1}$, M Maamache ${ }^{2}$ and D A Trifonov ${ }^{3}$
${ }^{1}$ Physical Faculty, Theoretical Physics Lab, USTHB, BP 32 El-Alia, Bab Ezzouar, 16111 Algiers, Algeria
${ }^{2}$ Laboratoire de Physique Quantique et Systèmes Dynamiques, Department of Physics, Setif University, Setif 19000, Algeria
${ }^{3}$ Institute of Nuclear Research, 72 Tzarigradsko Chaussée, 1784 Sofia, Bulgaria

Received 27 August 2006, in final form 11 January 2007
Published 6 February 2007
Online at stacks.iop.org/JPhysA/40/1835

Abstract

We introduce creation and annihilation operators of pseudo-Hermitian fermions for two-level systems described by a pseudo-Hermitian Hamiltonian with real eigenvalues. This allows the generalization of the fermionic coherent states approach to such systems. Pseudo-fermionic coherent states are constructed as eigenstates of two pseudo-fermion annihilation operators. These coherent states form a bi-normal and bi-overcomplete system, and their evolution governed by the pseudo-Hermitian Hamiltonian is temporally stable. In terms of the introduced pseudo-fermion operators, the two-level system Hamiltonian takes a factorized form similar to that of a harmonic oscillator.

PACS numbers: 03.05.-w, 03.65.Ca, 03.65.Ge

1. Introduction

In the last few years, a great deal of interest has been devoted to the study of non-Hermitian Hamiltonians with real spectrum (see [1-17] and references therein). Bender and Boettcher were the first to touch on this issue [7], by introducing the notion of $P T$-symmetry for one-dimensional non-Hermitian Hamiltonian $H_{v}=p^{2}+x^{2}(\mathrm{i} x)^{\nu},(v \geqslant 0)$, that possesses real, positive and discrete spectrum. In [15, 16], the Bessis-Zinn Justin conjecture about the reality of the spectrum of the $P T$-symmetric Hamiltonian $-\mathrm{d}^{2} / \mathrm{d} x^{2}-(\mathrm{i} x)^{2 M}$ for $M \geqslant 1$ has been proven. A criterion for the reality of the spectrum of non-Hermitian $P T$-symmetric Hamiltonians is provided in [17].

By definition, a $P T$-symmetric Hamiltonians H satisfies the relation

$$
\begin{equation*}
[H, P T]=0, \tag{1}
\end{equation*}
$$

where P and T are the operators of parity and time-reversal transformations, respectively. These are defined according to

$$
\begin{equation*}
P x P=-x, \quad P p P=T p T=-p, \quad T \mathrm{i} 1 T=-\mathrm{i} 1, \tag{2}
\end{equation*}
$$

where $x, p, 1$ are the position, momentum, and identity operators, respectively, acting on the Hilbert space, and i $:=\sqrt{-1}$.

Later, Mostafazadeh [8-12] introduced the notion of pseudo-Hermiticity in order to establish the mathematical relation with the notion of $P T$-symmetry. He explored the basic structure responsible for the reality of the spectrum of non-Hermitian Hamiltonians and established that all the $P T$-symmetric non-Hermitian Hamiltonians are pseudo-Hermitian. He has also shown that any diagonalizable operators with discrete spectra is pseudo-Hermitian if and only if its eigenvalues are either real or grouped in complex-conjugate pairs (with the same multiplicity). Moreover, this result has been generalized to the class all $P T$-symmetric standard Hamiltonians having \mathbb{R} as their configuration space and to the class of possibly nondiagonalizable Hamiltonians that admit a block-diagonalization with finite-dimensional diagonal blocks. In fact, many of the later developments in the field are anticipated in the paper by Scholtz, Geyer and Hahne [18] (see also [19]).

By definition [8], a Hamiltonian H is called pseudo-Hermitian if it satisfies the relation

$$
\begin{equation*}
H^{\dagger}=\eta H \eta^{-1} \tag{3}
\end{equation*}
$$

where η is a linear, Hermitian and invertible operator. One can also express the definition (3) in the form $H^{\#}=H$, where $H^{\#}=\eta^{-1} H^{\dagger} \eta$ is the η-pseudo-adjoint of H [8].

An interesting area where the pseudo-Hermiticity is applied is in the study of nonHermitian two-level systems [11, 14]. These simple Hamiltonian systems accurately model many physical systems in condensed mater, atomic physics and quantum optics [20-26]. The latter field provides a beautiful implementation of the coherent states formalism [28-31]. Rabi oscillations in the non-Hermitian system of a two-level atom in electromagnetic field have been recently examined in [14]. In the preceding paper [32], we have shown how the exact evolution and nonadiabatic Hannay's angle of Grassmannian classical mechanics of spin one-half in a varying external magnetic field is associated with the evolution of Grassmannian invariant-angle coherent states.

In this paper, we extend the fermionic coherent states approach [33-35, 37] to two-level non-Hermitian Hamiltonians which are pseudo-Hermitian (p-Hermitian). The underlying number system is Grassmann algebra [38, 39]. The set of coherent states (CS) for pseudofermionic (shortly p-fermionic) system turned out to consist of two subsets of states, which are bi-normalized and bi-overcomplete (shortly bi-normal CS).

The paper is organized as follows. In section 2, we study a non-Hermitian two-level system (a two-level atom interacting with electromagnetic field) and its pseudo-Hermitian properties. Then, we introduce the creation and annihilation operators for the two-level p-Hermitian system with real energy spectrum, such that its Hamiltonian ascribes a form similar to that of the free harmonic oscillator: $H=\Omega\left(b^{\#} b-1 / 2\right)$, where b and $b^{\#}$ are the pseudo-fermionic (p-fermionic) lowering and raising operators. In section 3, we construct the p-fermionic CS as eigenstates of two annihilation operators, the eigenvalues being complex Grassmann variables. The set of such eigenstates forms a bi-normal and bi-overcomplete system. Then, in section 4, we study the time evolution of the constructed p-fermionic CS for the corresponding two-level p-Hermitian system. This evolution is shown to be temporally stable. The paper ends with concluding remarks.

2. Two-level systems and pseudo-Hermitian fermions

We consider a two-level atom interacting with an electromagnetic field. The general state of the two-level atomic system is

$$
|\psi\rangle=C_{a}^{\prime}(t)|+\rangle+C_{b}^{\prime}(t)|-\rangle
$$

where $C_{a, b}^{\prime}$ are the amplitudes of being in $| \pm\rangle$. They are time dependent due to atom-field interaction. In the interaction picture (dipole interaction and phenomenologically described decay), and in the rotating wave approximation, the evolution of the system is described by the equation [24, 25]

$$
\mathrm{i} \frac{\partial}{\partial t}\binom{C_{a}^{\prime}(t)}{C_{b}^{\prime}(t)}=\frac{1}{2}\left(\begin{array}{cc}
-\mathrm{i} \gamma_{a} & \omega^{*} \tag{4}\\
\omega & -\mathrm{i} \gamma_{b}
\end{array}\right)\binom{C_{a}^{\prime}(t)}{C_{b}^{\prime}(t)}
$$

The real constants γ_{a}, γ_{b} are the decay rates for the upper and lower levels, respectively. The quantity ω characterizes the radiation-atom interaction matrix element between the levels (ω^{*} is the complex conjugate). The basic vectors of the upper (lower) level are $|+\rangle$ and $|-\rangle$.

We remove the average effect of the decay terms by means of a nonunitary transformation in the state space,

$$
\begin{equation*}
|\psi\rangle \rightarrow U(t)|\psi\rangle, \quad U(t)=\mathrm{e}^{\Gamma t}, \quad \Gamma=\frac{1}{4}\left(\gamma_{a}+\gamma_{b}\right) . \tag{5}
\end{equation*}
$$

The probability amplitudes in the new representation are $C_{i}(t)=\exp (\Gamma t) C_{i}^{\prime}(t), i=a, b$, and the non-Hermitian Hamiltonian takes the following matrix form:

$$
H=\frac{1}{2}\left(\begin{array}{cc}
-\mathrm{i} \delta & \omega^{*} \tag{6}\\
\omega & \mathrm{i} \delta
\end{array}\right)
$$

where $\delta=\left(\gamma_{a}-\gamma_{b}\right) / 2$.
The trace of H, equation (6), is vanishing, and the determinant of H is real, $\operatorname{det} H=$ $\left(\delta^{2}-|\omega|^{2}\right) / 4$. Therefore, it is η-pseudo-Hermitian (η-p-Hermitian) [10]. Its matrix is a particular case of a more general 2×2 traceless matrix studied in [11], where the complete biorthonormal system $\left\{\left|\psi_{i}\right\rangle,\left|\phi_{i}\right\rangle\right\}$ for H and the operator η are explicitly constructed. We reproduce this system and η (up to certain common factors) in our specific notation.

The eigenvalues E_{i} of $H, i=1,2$, and the related complete biorthonormal system are given by (we consider the nondegenerate case of $E_{i} \neq 0$)

$$
\begin{align*}
& E_{1}=-\frac{\Omega}{2}, \quad E_{2}=\frac{\Omega}{2}, \tag{7}\\
& \left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2 \Omega}}\binom{\frac{-\omega^{*} \sqrt{\Omega+\mathrm{i} \delta}}{|\omega|}}{\sqrt{\Omega-\mathrm{i} \delta}}, \quad\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2 \Omega}}\binom{\frac{\omega^{*} \sqrt{\Omega-\mathrm{i} \delta}}{|\omega|}}{\sqrt{\Omega+\mathrm{i} \delta}}, \tag{8}\\
& \left|\phi_{1}\right\rangle=\frac{1}{\sqrt{2 \Omega^{*}}}\binom{\frac{-\omega^{*} \sqrt{\Omega^{*}-\mathrm{i} \delta}}{|\omega|}}{\sqrt{\Omega^{*}+\mathrm{i} \delta}}, \quad\left|\phi_{2}\right\rangle=\frac{1}{\sqrt{2 \Omega^{*}}}\binom{\frac{\omega^{*} \sqrt{\Omega^{*}+\mathrm{i} \delta}}{|\omega|}}{\sqrt{\Omega^{*}-\mathrm{i} \delta}}, \tag{9}
\end{align*}
$$

where $\Omega=\sqrt{|\omega|^{2}-\delta^{2}}$.
For both real and complex eigenvalues (i.e. real and complex Ω), the Hamiltonian (6) satisfies the p-Hermiticity relation (3) with η given by

$$
\eta=\left(\begin{array}{cc}
1 & \frac{\mathrm{i} \delta \omega^{*}}{|\omega|^{2}} \tag{10}\\
-\frac{\mathrm{i} \delta \omega}{|\omega|^{2}} & 1
\end{array}\right)
$$

As noted in [14], the real eigenvalues correspond to the case where the dipole interaction is large relative to the damping effect (i.e. $|\omega|^{2}>\delta^{2}$). In this case, the ordinary Rabi frequency is replaced by the 'pseudo-Rabi frequency' which in our notation are $|\omega| / 2$ and $\Omega / 2$ correspondingly.

In the case of $\Omega=0$ (i.e. $|\omega|^{2}=\delta^{2}$), the amplitudes $C_{a}^{\prime}, C_{b}^{\prime}$ are given by [14] $(1-\delta t) \exp (-\Gamma t)$ and $(\mathrm{i} \omega t / 2) \exp (-\Gamma t)$ correspondingly, where $\Gamma=\left(\gamma_{a}+\gamma_{b}\right) / 4$. Due to the exponential decay factor $\exp (-\Gamma t)$, any divergence [27] does not occur in our system.

In the case of $|\omega|^{2}<\delta^{2}$ the eigenvalues of H are pure imaginary, but the Hamiltonian is still pseudo-Hermitian [14].

The $P T$-symmetry of our Hamiltonian (6) is considered in [14] following the method of Bender, Brody and Jones [4]. The Parity operator P of the two-level system can be defined as [4]

$$
P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

so that $P^{2}=1, P=P^{-1}$.
The generalized parity operator for the two-level systems is defined [12, 13] as $P=\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|-\left|\phi_{2}\right\rangle\left\langle\phi_{2}\right|$, which in our case results to

$$
P=\left(\begin{array}{cc}
0 & -\frac{\omega^{*}}{|\omega|} \\
-\frac{\omega}{|\omega|} & 0
\end{array}\right) .
$$

Different definitions have been introduced by Mostafazadeh [12] and Ahmed [13] for the antilinear time-reversal operator T. As in the paper [14], we use the representation introduced by Bender et al [4], namely,

$$
T=K_{0}
$$

where K_{0} is the complex conjugation operator. One has $K_{0}^{2}=1,(P T)^{2}=1$, and one finds that $P T$ commutes with $H, P K_{0} H K_{0}^{-1} P^{-1}=H$. If one uses the generalized parity operator $P=\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|-\left|\phi_{2}\right\rangle\left\langle\phi_{2}\right|$, then one can take $T=U K_{0}$, where U is a 2×2 unitary diagonal matrix, $U_{22}=U_{11}^{*}=-\omega /|\omega|$.

The generalized charge conjugation operator C for two-level system is given by the expression [12] $C=\left|\psi_{1}\right\rangle\left\langle\phi_{1}\right|-\left|\psi_{2}\right\rangle\left\langle\phi_{2}\right|$, which in our case reads

$$
C=\frac{1}{\Omega}\left(\begin{array}{cc}
\mathrm{i} \delta & -\omega^{*} \\
-\omega & -\mathrm{i} \delta
\end{array}\right)=-\frac{2}{\Omega} H .
$$

From the last equation we deduce that C commutes with the Hamiltonian $H,[C, H]=0$. This invariance property eliminates negative inner products [14].

Furthermore unless otherwise stated, we consider the small damping effect case of our system, i.e. $|\omega|^{2}>\delta^{2}$, that is Ω real (and if real it is positive). One can verify that in this regime the operator η, equation (10), can be represented in terms of $\left|\phi_{i}\right\rangle$ as

$$
\begin{equation*}
\eta=\frac{\Omega}{|\omega|}\left(\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|+\left|\phi_{2}\right\rangle\left\langle\phi_{2}\right|\right) \equiv \frac{\Omega}{|\omega|} \eta_{+} . \tag{11}
\end{equation*}
$$

The operator η is positive definite. The notation $\eta_{+}=\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|+\left|\phi_{2}\right\rangle\left\langle\phi_{2}\right|$ was introduced by Mostafazadeh [40].

Now, let us introduce the annihilation operator b associated with the Hamiltonian H given in equation (6),

$$
b=\frac{1}{2 \Omega}\left(\begin{array}{cc}
-|\omega| & \frac{-\omega^{*}(\Omega+\mathrm{i} \delta)}{|\omega|} \tag{12}\\
\frac{\omega(\Omega-\mathrm{i} \delta)}{|\omega|} & |\omega|
\end{array}\right)
$$

Its adjoint operator reads (Ω is real)

$$
b^{+}=\frac{1}{2 \Omega}\left(\begin{array}{cc}
-|\omega| & \frac{\omega^{*}(\Omega+\mathrm{i} \delta)}{|\omega|} \tag{13}\\
\frac{-\omega(\Omega-\mathrm{i} \delta)}{|\omega|} & |\omega|
\end{array}\right),
$$

and its η-p-Hermitian adjoint $b^{\#}$, defined by

$$
\begin{equation*}
b^{\#}=\eta^{-1} b^{+} \eta, \tag{14}
\end{equation*}
$$

takes the form

$$
b^{\#}=\frac{1}{2 \Omega}\left(\begin{array}{cc}
-|\omega| & \frac{\omega^{*}(\Omega-\mathrm{i} \delta)}{|\omega|} \tag{15}\\
\frac{-\omega(\Omega+i \delta)}{|\omega|} & |\omega|
\end{array}\right) .
$$

Next, we examine the properties of the operators $b^{\#}$ and b. First is that $b^{\#}$ and b realize a pseudo-Hermitian generalization of the fermion algebra, namely,

$$
\begin{equation*}
b^{2}=b^{\# 2}=0, \quad\left\{b, b^{\#}\right\}=b b^{\#}+b^{\#} b=1 \tag{16}
\end{equation*}
$$

$b^{\#}$ and b could be called the creation and annihilation operators of p-Hermitian fermions [41]. One can verify that they raise and lower the eigenvalues of H by a quantity $\Omega=2 E$, i.e. they act on the states $\left|\psi_{i}\right\rangle$ as follows:

$$
\begin{array}{lc}
b\left|\psi_{1}\right\rangle=0, & b\left|\psi_{2}\right\rangle=\left|\psi_{1}\right\rangle \\
b^{\#}\left|\psi_{2}\right\rangle=0, & b^{\#}\left|\psi_{1}\right\rangle=\left|\psi_{2}\right\rangle \tag{18}
\end{array}
$$

The operator b annihilates the lowest eigenstates $\left|\psi_{1}\right\rangle$, and $b^{\#}$ brings this state onto the upper eigenstates $\left|\psi_{2}\right\rangle$.

Introducing the quadratic operator $N=b^{\#} b$, the p-fermionic number operator, we find the following natural anticommutation relations:

$$
\begin{equation*}
\{N, b\}=b \quad\left\{N, b^{\#}\right\}=b^{\#} \tag{19}
\end{equation*}
$$

In terms of the operators b and $b^{\#}$, the Hamiltonian H is factorized (up to an additive C-number term) to a form similar to that of the free (boson) harmonic oscillator,

$$
\begin{equation*}
H=\Omega\left(b^{\#} b-\frac{1}{2}\right) \tag{20}
\end{equation*}
$$

Taking the Hermitian conjugate of both sides of (20), we reaffirm the p-Hermiticity of H (according to definition (3)):

$$
\begin{aligned}
H^{+} & =\Omega\left(b^{+} \eta b \eta^{-1}-\frac{1}{2}\right) \\
& =\Omega \eta \eta^{-1}\left(b^{+} \eta b \eta^{-1}-\frac{1}{2}\right) \eta \eta^{-1} \\
& =\eta H \eta^{-1} .
\end{aligned}
$$

The above relations confirm that b and $b^{\#}$ are lowering and raising operators for the two-level p-Hermitian system (with real eigenvalues) and can be regarded as p-fermionic annihilation and creation operators. This is consistent with the limit $\delta=0$, corresponding to a Hermitian Hamiltonian, when $\eta=1$ and $b^{\#}=b^{+}$, i.e. the p-Hermitian generalization of the fermion algebra reduces to the usual fermion algebra. Quantum system with Hamiltonian of the form (20) should be referred to as p-fermionic oscillator.

3. Pseudo-fermionic coherent states

Having introduced the p-fermion lowering and raising operators, we now embark on the construction of the p-fermionic coherent states (CS) for our system described by p-Hermitian Hamiltonian H given in equation (6). We shall follow as closely as possible the scheme of fermionic CS developed in papers [33-35, 37], generalizing it to the p-fermion case. For the
reader convenience, we begin with a brief reminder of the properties of complex Grassmann variables [$33,35-37$], denoted here as ξ and ξ^{*}.

The complex Grassmannian variables ξ_{i} and their complex conjugates ξ_{i}^{*} satisfy the anticommutation relations:

$$
\begin{align*}
& \left\{\xi_{i}, \xi_{j}\right\}=\xi_{i} \xi_{j}+\xi_{j} \xi_{i}=0 \tag{21}\\
& \left\{\xi_{i}^{*}, \xi_{j}\right\}=0, \quad\left\{\xi_{i}^{*}, \xi_{j}^{*}\right\}=0 \tag{22}
\end{align*}
$$

ξ_{i} 's anticommute with b and $b^{\#}$,

$$
\begin{equation*}
\left\{\xi_{i}, b\right\}=0, \quad\left\{\xi_{i}^{*}, b\right\}=0, \quad\left\{\xi_{i}, b^{\#}\right\}=0, \tag{23}
\end{equation*}
$$

and have the following properties:

$$
\begin{array}{ll}
\xi\left|\psi_{1}\right\rangle=\left|\psi_{1}\right\rangle \xi, & \xi\left|\psi_{2}\right\rangle=-\left|\psi_{2}\right\rangle, \\
\xi\left|\phi_{1}\right\rangle=\left|\phi_{1}\right\rangle \xi, & \xi\left|\phi_{2}\right\rangle=-\left|\phi_{2}\right\rangle \xi . \tag{25}
\end{array}
$$

The pseudo-Hermitian conjugation reverses the order of all fermionic quantities, both the operators and the Grassmann variables:

$$
\begin{equation*}
\left(b^{\#} \xi_{i}+\xi_{i}^{*} b\right)^{\#}=\xi_{i}^{*} b+b^{\#} \xi_{i} . \tag{26}
\end{equation*}
$$

The Grassmann integration and differentiation over the complex Grassmann variables are given by
$\int \mathrm{d} \xi 1=0, \quad \int \mathrm{~d} \xi \xi=1, \quad \int \mathrm{~d} \xi^{*} 1=0, \quad \int \mathrm{~d} \xi^{*} \xi^{*}=1$,
$\frac{\mathrm{d}}{\mathrm{d} \xi} 1=0, \quad \frac{\mathrm{~d}}{\mathrm{~d} \xi} \xi=1, \quad \frac{\mathrm{~d}}{\mathrm{~d} \xi^{*}} 1=0, \quad \frac{\mathrm{~d}}{\mathrm{~d} \xi^{*}} \xi^{*}=1$.
The Grassmann integration of any function is equivalent to the left differentiation

$$
\begin{equation*}
\int \mathrm{d} \xi f(\xi)=\frac{\partial}{\partial \xi} f(\xi) . \tag{29}
\end{equation*}
$$

We define the displacement operators $D(\xi)$ for any set of complex Grassmannian variables ξ in the following way:

$$
\begin{align*}
D(\xi) & =\exp \left(b^{\#} \xi-\xi^{*} b\right) \tag{30}\\
& =1+b^{\#} \xi-\xi^{*} b+\left(b^{\#} b-\frac{1}{2}\right) \xi^{*} \xi \tag{31}
\end{align*}
$$

The pseudo-Hermitian adjoint $D^{\#}$ is given by

$$
\begin{align*}
D^{\#}(\xi) & =\exp \left(\xi^{*} b-b^{\#} \xi\right) \tag{32}\\
& =1+\xi^{*} b-b^{\#} \xi+\left(b^{\#} b-\frac{1}{2}\right) \xi^{*} \xi \tag{33}
\end{align*}
$$

These two operators satisfy the following displacement relation:

$$
D^{\#}(\xi) b D(\xi)=b+\xi
$$

Using the explicit formulae of D and $D^{\#}$, and the anticommutation relations between operators $b, b^{\#}$ and Grassmann variable ξ, we establish that $D(\xi)$ are pseudo-unitary: $D^{\#}(\xi) D(\xi)=1=D(\xi) D^{\#}(\xi)$.

We now define the pseudo-fermionic coherent states (p-fermionic CS) $|\xi\rangle$ as eigenstates of the annihilation operator b,

$$
\begin{equation*}
b|\xi\rangle=\xi|\xi\rangle \tag{34}
\end{equation*}
$$

The eigenvalue ξ is a complex Grassmannian variable.
The Hermitian adjoint of the CS (the bra-vector) is $\langle\xi|$ and it is left eigenstate of $b^{\dagger},\langle\xi| b^{\dagger}=\langle\xi| \xi^{*}$. In order to meet the alternative relation ${ }_{\eta}\langle\xi| b^{\#}={ }_{\eta}\langle\xi| \xi^{*}$, one has to define ${ }_{\eta}\langle\xi| \equiv(|\xi\rangle)^{\#}:=\langle\xi| \eta$.

Similarly to the cases of Glauber bosonic CS [28] and of fermionic CS [33] our p-fermion eigenstates $|\xi\rangle$ can be constructed from the lowest (ground) eigenstate $\left|\psi_{1}\right\rangle$ of the Hamiltonian H, acting on it by the pseudo-unitary operator $D(\xi)$:

$$
\begin{equation*}
|\xi\rangle=D(\xi)\left|\psi_{1}\right\rangle \tag{35}
\end{equation*}
$$

By using the formula (31) for the displacement operator, we may write the state $|\xi\rangle$ in the form

$$
\begin{equation*}
|\xi\rangle=\exp \left(-\frac{1}{2} \xi^{*} \xi\right)\left(\left|\psi_{1}\right\rangle-\xi\left|\psi_{2}\right\rangle\right) \tag{36}
\end{equation*}
$$

The Hermitian adjoint of the CS is

$$
\begin{align*}
\langle\xi| & =\left\langle\psi_{1}\right| \mid D^{\dagger}(\xi) \tag{37}\\
& =\exp \left(-\frac{1}{2} \xi^{*} \xi\right)\left(\left\langle\psi_{1}\right|+\xi^{*}\left\langle\psi_{2}\right|\right) \tag{38}
\end{align*}
$$

and the inner product $\langle\xi \mid \xi\rangle$ is

$$
\begin{equation*}
\langle\xi \mid \xi\rangle=\left\langle\psi_{1} \mid \psi_{1}\right\rangle+\left(\left\langle\psi_{2} \mid \psi_{2}\right\rangle-\left\langle\psi_{1} \mid \psi_{1}\right\rangle\right) \xi^{*} \xi-2 \mathrm{i} \operatorname{Im}\left(\xi\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right) \tag{39}
\end{equation*}
$$

so that $|\xi\rangle$ are not normalized.
Now we have to examine the set $\{|\xi\rangle\}$ for (over)completeness. One can straightforwardly check (using the rules (21)-(27)) that neither the integral (against the measure $\mathrm{d} \xi^{*} \mathrm{~d} \xi$) of the Hermitian $|\xi\rangle\langle\xi|$ nor the integral of p-Hermitian $|\xi\rangle_{\eta}\langle\xi|$ (unnormalized) projectors result in the identity operator:

$$
\begin{equation*}
\int \mathrm{d} \xi^{*} \mathrm{~d} \xi|\xi\rangle\langle\xi| \neq 1, \quad \int \mathrm{~d} \xi^{*} \mathrm{~d} \xi|\xi\rangle_{\eta}\langle\xi| \neq 1 \tag{40}
\end{equation*}
$$

The way out of this impasse is suggested by the known transition from 'orthonormal system' of eigenstates of Hermitian H to the 'biorthonormal system' of states of p-Hermitian H. With this idea in mind, we introduce another continuous family of states, namely the eigenstates $\widetilde{\xi \xi\rangle}$ of the operator \tilde{b}, that annihilates the dual state $\left|\phi_{1}\right\rangle$,

$$
\begin{equation*}
\tilde{b}|\widetilde{\xi}\rangle=\xi|\widetilde{\xi}\rangle, \quad \tilde{b}=\eta b \eta^{-1} \tag{41}
\end{equation*}
$$

Operator \tilde{b} is nilpotent, $\tilde{b}^{2}=0$ and anticommutes with b^{\dagger}. Representing $b^{\dagger}=\eta \tilde{b}^{\dagger} \eta^{-1}$, we see that b^{\dagger} is η^{\prime}-p-Hermitian adjoint to $\tilde{b}, \eta^{\prime}=\eta^{-1}$. Denoting this pseudo-conjugation by ${ }^{\# \prime}$ we obtain the pair of p-fermionic operators \tilde{b} and $\tilde{b}^{\# \prime}$,

$$
\begin{equation*}
\tilde{b} \tilde{b}^{\# \prime}+\tilde{b}^{\# \prime} \tilde{b}=1, \quad \tilde{b}^{2}=\left(\tilde{b}^{\# \prime}\right)^{2}=0 \tag{42}
\end{equation*}
$$

In view of the p-fermionic algebra (42), we introduce new displacement operators

$$
\widetilde{D}(\xi)=\exp \left(\tilde{b}^{\# \prime} \xi-\xi^{*} \tilde{b}\right), \quad \widetilde{D}^{\# \prime}(\xi) \tilde{b} \widetilde{D}(\xi)=\tilde{b}+\xi
$$

and construct eigenstates of \tilde{b} according to the above-described scheme (see equations (35), (36)),

$$
\begin{align*}
|\widetilde{\xi}\rangle & =\widetilde{D}(\xi)\left|\phi_{1}\right\rangle \tag{43}\\
& =\exp \left(-\frac{1}{2} \xi^{*} \xi\right)\left(\left|\phi_{1}\right\rangle-\xi\left|\phi_{2}\right\rangle\right) \tag{44}
\end{align*}
$$

$$
\begin{equation*}
\widetilde{\xi \xi}|\widetilde{\xi}\rangle=\left\langle\phi_{1} \mid \phi_{1}\right\rangle+\left(\left\langle\phi_{2} \mid \phi_{2}\right\rangle-\left\langle\phi_{1} \mid \phi_{1}\right\rangle\right) \xi^{*} \xi-2 i \operatorname{Im}\left(\xi\left\langle\phi_{1} \mid \phi_{2}\right\rangle\right), \tag{45}
\end{equation*}
$$

while

$$
\widetilde{\langle\xi}|\xi\rangle=\frac{|\omega|}{\Omega}\langle\xi| \eta|\xi\rangle=1,
$$

or, more generally,

$$
\begin{equation*}
\langle\xi \mid \widetilde{\zeta}\rangle=\left\langle\psi_{1}\right| D^{\dagger}(\xi) \widetilde{D}(\zeta)\left|\phi_{1}\right\rangle=\xi^{*} \zeta+\frac{1}{4}\left(2-\xi^{*} \xi\right)\left(2-\zeta^{*} \zeta\right) \tag{46}
\end{equation*}
$$

By means of the two types of states $|\xi\rangle$ and $|\widetilde{\xi}\rangle$ the resolution of the identity is realized in the following way:

$$
\begin{equation*}
\left.1=\int \mathrm{d} \xi^{*} \mathrm{~d} \xi|\xi\rangle \widetilde{\widetilde{\xi}}\left|=\int \mathrm{d} \xi^{*} \mathrm{~d} \xi\right| \widetilde{\xi}\right\rangle\langle\xi| . \tag{47}
\end{equation*}
$$

Equations (47) can be easily verified using the expansions of $|\xi\rangle$ and $|\widetilde{\xi}\rangle$ in terms of $\left|\psi_{i}\right\rangle$ and $\left|\phi_{i}\right\rangle$ (equations (36) and (44)) and the rules of permutation and integration (21)-(27).

We have obtained that the system of one-mode p-fermionic CS consists of two subsets, namely $\{|\xi\rangle\}$ and $\{|\widetilde{\xi}\rangle\}$. In view of (45) and (46) this continuous system should be called bi-normalized and bi-overcomplete or shortly system of bi-normal CS. Similarly, the two sets of pseudo-unitary operators $D(\xi), \widetilde{D}(\xi)$ should be called bi-unitary:

$$
D(\xi) \widetilde{D}^{\dagger}(\xi)=1=\widetilde{D}^{\dagger}(\xi) D(\xi)
$$

Note that $D(\xi)$ is η-pseudo-unitary, while $\widetilde{D}(\xi)$ is η^{\prime}-pseudo-unitary with $\eta^{\prime}=\eta^{-1}$.

4. Time evolution of \mathbf{p}-fermionic coherent states

A given parametric set of states is said to be realizable for a physical system if the time evolution $|\psi ; t\rangle$ of any initial state $|\psi\rangle$ from the set, governed by the Hamiltonian, leaves the state in the set [42]. In other words $|\psi ; t\rangle$, for any t, obeys the defining criteria of the set. In such a case one shortly says that the time evolution (of the parametric set of states) is stable [42]. In Hermitian mechanics, this means that the time dependence of the states is included, up to a phase factor, in the state parameters. For example, the time evolution $|\alpha ; t\rangle$ of Glauber CS $|\alpha\rangle$ [28] is stable with respect to the harmonic oscillator evolution operator $\exp (-\mathrm{i} H t), H=\omega\left(a^{\dagger} a+1 / 2\right)$:

$$
\begin{equation*}
|\alpha ; t\rangle=\mathrm{e}^{-\mathrm{i} \omega t / 2}|\alpha(t)\rangle, \quad a|\alpha ; t\rangle=\alpha(t)|\alpha(t)\rangle, \quad \alpha(t)=\alpha \mathrm{e}^{-\mathrm{i} \omega t} . \tag{48}
\end{equation*}
$$

In the case of our p-fermionic $\mathrm{CS}\{|\xi\rangle,|\widetilde{\xi}\rangle\}$, the set parameter is the complex Grassmann variable ξ, the eigenvalue of the p -fermionic lowering operators b or \tilde{b}. The time evolution is stable if the evolved states $|\xi ; t\rangle$ and $\widetilde{|\xi ; t\rangle}$ remain eigenstates of the operators b and \tilde{b}, respectively,

$$
\begin{equation*}
b|\xi ; t\rangle=\xi(t)|\xi ; t\rangle, \quad \tilde{b} \widetilde{\xi ; t\rangle}=\xi(t) \widetilde{\xi ; t\rangle} \tag{49}
\end{equation*}
$$

This implies that the time-evolved CS $|\xi ; t\rangle$ and $\widetilde{|\xi ; t\rangle}$ should form bi-normal and biovercomplete system.

Let us first consider the time evolution of an initial CS $|\xi\rangle$. Clearly, we have $|\xi ; t\rangle=\exp (-\mathrm{i} H t)|\xi\rangle,|\xi ; 0\rangle \equiv|\xi\rangle$. Using the form (36) of $|\xi\rangle$ and the facts that $\left|\psi_{1,2}\right\rangle$ are eigenstates of H (with eigenvalues $E_{1,2}$), we get

$$
\begin{equation*}
|\xi ; t\rangle=\mathrm{e}^{-\mathrm{i} E_{1} t}\left(1-\frac{1}{2} \xi^{*} \xi\right)\left|\psi_{1}\right\rangle-\mathrm{e}^{-\mathrm{i} E_{2} t} \xi\left|\psi_{2}\right\rangle . \tag{50}
\end{equation*}
$$

Taking into account that $E_{1}=-\Omega / 2 \equiv-E$ and $E_{2}=\Omega / 2 \equiv E$, we put $\xi(t)=\mathrm{e}^{-\mathrm{i} 2 E t} \xi$ and rewrite the last equation in the form

$$
\begin{equation*}
|\xi ; t\rangle=\mathrm{e}^{\mathrm{i} E t}\left[\left(1-\frac{1}{2} \xi(t)^{*} \xi(t)\right)\left|\psi_{1}\right\rangle-\xi(t)\left|\psi_{2}\right\rangle\right]=\mathrm{e}^{\mathrm{i} E t}|\xi(t)\rangle . \tag{51}
\end{equation*}
$$

which manifests the stability of the time evolution of $\mathrm{CS}|\xi\rangle$. Note that the overall timedependent factor $\exp (\mathrm{i} E t)$ is a phase factor since E_{i} are real.

In a similar manner, we establish that the time evolution $\widetilde{|\xi ; t\rangle}$ of an initial $\widetilde{\xi \xi\rangle}$ is stable (remains eigenstate of \tilde{b}):

$$
\begin{align*}
\widetilde{|\xi ; t\rangle} & \left.=\exp \left(-\mathrm{i} H^{\dagger} t\right) \widetilde{\xi}\right\rangle \\
& =\exp \left(-\mathrm{i} E_{1} t\right)\left(1-\frac{1}{2} \xi^{*} \xi\right)\left|\phi_{1}\right\rangle-\exp \left(-\mathrm{i} E_{2} t\right) \xi\left|\phi_{2}\right\rangle \\
& =\exp (\mathrm{i} E t)\left(\left(1-\frac{1}{2} \xi(t)^{*} \xi(t)\right)\left|\phi_{1}\right\rangle-\xi(t)\left|\phi_{2}\right\rangle\right)=\exp (\mathrm{i} E t) \widetilde{\xi(t)\rangle} \tag{52}
\end{align*}
$$

The results (51) and (52) reveal the bi-normality and bi-overcompleteness of the family of timeevolved states $\{|\xi ; t\rangle, \mid \overline{\xi ; t\rangle}\}$ of the p-fermionic oscillator system (20): one has $\langle t ; \xi \mid \xi ; t\rangle=1$, and

$$
\begin{equation*}
1=\int \mathrm{d} \xi^{*} \mathrm{~d} \xi|\xi ; t\rangle \widetilde{\langle t ; \xi|}=\int \mathrm{d} \xi^{*} \mathrm{~d} \xi \widetilde{|\xi ; t\rangle\langle t ; \xi| .} \tag{53}
\end{equation*}
$$

We observe that here the time-evolved states $|\xi ; t\rangle$ and $\widetilde{\xi ; i\rangle}$ differ from CS $|\xi(t)\rangle$ and $\widetilde{\xi(t)\rangle}$ in phase factors only. In more general cases, the overall factors $\mathcal{N}(t)$ and $\widetilde{\mathcal{N}}(t)$ ascribed in the stable evolution of bi-normal and bi-overcomplete system of states could not be phase factors, but their product should equal unity, $\mathcal{N}^{*}(t) \widetilde{\mathcal{N}}(t)=1$.

Finally, we have to note that a complementary bi-normal and bi-overcomplete system of states can be constructed, in a symmetrical manner using the operators $b^{\#}$ and $\widetilde{b^{\#}}$, that annihilate the 'upper level states' $\left|\psi_{2}\right\rangle$ and $\left|\phi_{2}\right\rangle$.

5. Concluding remarks

In this paper, we have generalized the fermionic coherent states (CS) for two-level systems described by pseudo-Hermitian Hamiltonian with real spectrum. Unlike the standard bosonic and fermionic cases the system of pseudo-fermionic (p-fermionic) CS consists of two subsets, which are bi-normalized and bi-overcomplete. In this sense, the system of p-fermionic CS can be regarded as a continuous analogue of the biorthonormal system of discrete eigenstates of p-Hermitian H. The two subsets are built up as eigenstates of the p-fermion annihilation operators b and $\tilde{b}=\eta b \eta^{-1}$, where η is the Hermitian operator that ensures the p-Hermiticity of the Hamiltonian, $H=\eta^{-1} H^{\dagger} \eta$. In terms of b and $b^{\#}=\eta^{-1} b^{\dagger} \eta$, the Hamiltonian is factorized to the form of p-fermionic oscillator, equation (20).

The evolution of the p-fermionic CS governed by the p-Hermitian two-level Hamiltonian (6) is shown to be time stable-the evolved states remain eigenstates of the p-fermionic annihilation operators, preserving the bi-normality and bi-overcompleteness of the system at later time. In the Hermitian limit of $\eta=1$ (that is $\delta=0$ in (6)), our p-fermionic CS and all related formulae recover standard fermionic CS of [33, 34]. Time evolution of fermionic CS for a Pauli spin in a slowly varying magnetic field was examined by Abe [35] (see also the comment [36]).

Acknowledgments

One of the authors (OC) acknowledges Drs M Le Bellac and J P Provost for their useful comments and valuable discussions.

References

[1] Khare A and Mandal B M 2000 Phys. Lett. A 27253
[2] Cannata F, Ioffe M, Roychoudhury R and Roy P 2001 Phys. Lett. A 281305
[3] Bender C M, Berry M V and Mandilara A 2002 J. Phys. A: Math. Gen. 35 L467
[4] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89270401
[5] Bender C M, Meisinger P N and Wang Q 2003 J. Phys. A: Math. Gen. 361973
[6] Znojil M 2006 J. Phys. A: Math. Gen. 394047
[7] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 805243
[8] Mostafazadeh A 2002 J. Math. Phys. 43205
[9] Mostafazadeh A 2002 Mod. Phys. Lett. A 171973
[10] Mostafazadeh A 2002 J. Math. Phys. 436343
[11] Mostafazadeh A 2002 Nucl. Phys. B 640419
[12] Mostafazadeh A 2002 J. Math. Phys. 44974
[13] Ahmed Z 2003 J. Phys. A: Math. Gen. 369711
[14] Ben-Aryeh Y, Mann A and Yaakov I 2004 J. Phys. A: Math. Gen. 3712059
[15] Dorey P, Dunning C and Tateo R 2001 J. Phys. A: Math. Gen. 34 L391
Dorey P, Dunning C and Tateo R 2001 J. Phys. A: Math. Gen. 345679
[16] Shin K 2002 Commun. Math. Phys. 229543
[17] Caliceti E, Graffi S and Sjostrand J 2005 J. Phys. A: Math. Gen. 38185
[18] Scholtz F G, Geyer H B and Hahne F J W 1992 Ann. Phys., NY 21374
[19] Bender C M 2006 J. Phys. A: Math. Gen. 399993
[20] Bohr A and Mottelson B R 1969 Nuclear Structure vol 1 (New York: Benjamin) (section 2.4)
[21] Baye D, Lévai G and Sparenberg J M 1996 Nucl. Phys. A 599435
[22] Wong J 1967 J. Math. Phys. 82039
[23] Faisal F H M and Moloney J V 1981 J. Phys. B: At. Mol. Phys. 143603
[24] Lamb W E, Schlicher R R and Scully M O 1987 Phys. Rev. A 362763
[25] Garrison J and Wright E 1988 Phys. Lett. A 128177
[26] Choutri H, Maamache M and Menouar S 2002 J. Korean Phys. Soc. 40358
[27] Stehmann T, Heiss W D and Scholtz F E 2004 J. Phys. A: Math. Gen. 377813
[28] Glauber R J 1963 Phys. Rev. Lett. 1084
Glauber R J 1963 Phys. Rev. 1302529
Glauber R J 1963 Phys. Rev. 1312766
[29] Klauder J R and Skagerstam B S 1985 Coherent States-Applications in Physics and Mathematical Physics (Singapore: World Scientific)
[30] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
[31] Twareque Ali S, Antoine J P, Gazeau J P and Mueler U A 1995 Rev. Math. Phys. 71013
[32] Maamache M and Cherbal O 1999 Eur. Phys. J. D 6145
[33] Cahill K E and Glauber R J 1999 Phys. Rev. A 591538
[34] Lee C J 1992 Phys. Rev. A 466049
[35] Abe S 1989 Phys. Rev. D 392327
[36] Maamache M, Provost J P and Vallée G 1992 Phys. Rev. D 46873
[37] Ohnuki J and Kashiwa T 1978 Prog. Theor. Phys. 60548
[38] Berezin F A 1966 The Method of Second Quantization (New York: Academic)
[39] Berezin F A and Marinov M S 1977 Ann. Phys., NY 104336
[40] Mostafazadeh A 2004 J. Phys. A: Math. Gen. 3711645
[41] Mostafazadeh A 2004 J. Phys. A: Math. Gen. 3710193
[42] Trifonov D A 1994 J. Math. Phys. 352297
Nikolov B A and Trifonov D A 1981 Dynamics of generalized coherent states: I. Exact and stable evolution Commun. JINR E2-81-797 (Dubna) (Preprint quant-ph/0407260)

