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Abstract
We introduce creation and annihilation operators of pseudo-Hermitian fermions
for two-level systems described by a pseudo-Hermitian Hamiltonian with real
eigenvalues. This allows the generalization of the fermionic coherent states
approach to such systems. Pseudo-fermionic coherent states are constructed as
eigenstates of two pseudo-fermion annihilation operators. These coherent
states form a bi-normal and bi-overcomplete system, and their evolution
governed by the pseudo-Hermitian Hamiltonian is temporally stable. In terms
of the introduced pseudo-fermion operators, the two-level system Hamiltonian
takes a factorized form similar to that of a harmonic oscillator.

PACS numbers: 03.05.−w, 03.65.Ca, 03.65.Ge

1. Introduction

In the last few years, a great deal of interest has been devoted to the study of non-Hermitian
Hamiltonians with real spectrum (see [1–17] and references therein). Bender and Boettcher
were the first to touch on this issue [7], by introducing the notion of PT -symmetry for
one-dimensional non-Hermitian Hamiltonian Hν = p2 + x2(ix)ν, (ν � 0), that possesses
real, positive and discrete spectrum. In [15, 16], the Bessis–Zinn Justin conjecture about the
reality of the spectrum of the PT -symmetric Hamiltonian −d2/dx2 − (ix)2M for M � 1 has
been proven. A criterion for the reality of the spectrum of non-Hermitian PT -symmetric
Hamiltonians is provided in [17].

By definition, a PT -symmetric Hamiltonians H satisfies the relation

[H,PT ] = 0, (1)

where P and T are the operators of parity and time-reversal transformations, respectively.
These are defined according to

PxP = −x, PpP = TpT = −p, T i1T = −i1, (2)
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where x, p, 1 are the position, momentum, and identity operators, respectively, acting on the
Hilbert space, and i := √−1.

Later, Mostafazadeh [8–12] introduced the notion of pseudo-Hermiticity in order to
establish the mathematical relation with the notion of PT -symmetry. He explored the basic
structure responsible for the reality of the spectrum of non-Hermitian Hamiltonians and
established that all the PT -symmetric non-Hermitian Hamiltonians are pseudo-Hermitian.
He has also shown that any diagonalizable operators with discrete spectra is pseudo-Hermitian
if and only if its eigenvalues are either real or grouped in complex-conjugate pairs (with the
same multiplicity). Moreover, this result has been generalized to the class all PT -symmetric
standard Hamiltonians having R as their configuration space and to the class of possibly
nondiagonalizable Hamiltonians that admit a block-diagonalization with finite-dimensional
diagonal blocks. In fact, many of the later developments in the field are anticipated in the
paper by Scholtz, Geyer and Hahne [18] (see also [19]).

By definition [8], a Hamiltonian H is called pseudo-Hermitian if it satisfies the relation

H † = ηHη−1, (3)

where η is a linear, Hermitian and invertible operator. One can also express the definition (3)
in the form H # = H , where H # = η−1H †η is the η-pseudo-adjoint of H [8].

An interesting area where the pseudo-Hermiticity is applied is in the study of non-
Hermitian two-level systems [11, 14]. These simple Hamiltonian systems accurately model
many physical systems in condensed mater, atomic physics and quantum optics [20–26]. The
latter field provides a beautiful implementation of the coherent states formalism [28–31].
Rabi oscillations in the non-Hermitian system of a two-level atom in electromagnetic field
have been recently examined in [14]. In the preceding paper [32], we have shown how the
exact evolution and nonadiabatic Hannay’s angle of Grassmannian classical mechanics of spin
one-half in a varying external magnetic field is associated with the evolution of Grassmannian
invariant-angle coherent states.

In this paper, we extend the fermionic coherent states approach [33–35, 37] to two-level
non-Hermitian Hamiltonians which are pseudo-Hermitian (p-Hermitian). The underlying
number system is Grassmann algebra [38, 39]. The set of coherent states (CS) for pseudo-
fermionic (shortly p-fermionic) system turned out to consist of two subsets of states, which
are bi-normalized and bi-overcomplete (shortly bi-normal CS).

The paper is organized as follows. In section 2, we study a non-Hermitian two-level
system (a two-level atom interacting with electromagnetic field) and its pseudo-Hermitian
properties. Then, we introduce the creation and annihilation operators for the two-level
p-Hermitian system with real energy spectrum, such that its Hamiltonian ascribes a form
similar to that of the free harmonic oscillator: H = �(b#b − 1/2), where b and b# are the
pseudo-fermionic (p-fermionic) lowering and raising operators. In section 3, we construct the
p-fermionic CS as eigenstates of two annihilation operators, the eigenvalues being complex
Grassmann variables. The set of such eigenstates forms a bi-normal and bi-overcomplete
system. Then, in section 4, we study the time evolution of the constructed p-fermionic CS for
the corresponding two-level p-Hermitian system. This evolution is shown to be temporally
stable. The paper ends with concluding remarks.

2. Two-level systems and pseudo-Hermitian fermions

We consider a two-level atom interacting with an electromagnetic field. The general state of
the two-level atomic system is

|ψ〉 = C ′
a(t)|+〉 + C ′

b(t)|−〉,
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where C ′
a,b are the amplitudes of being in |±〉. They are time dependent due to atom–field

interaction. In the interaction picture (dipole interaction and phenomenologically described
decay), and in the rotating wave approximation, the evolution of the system is described by
the equation [24, 25]

i
∂

∂t

(
C ′

a(t)

C ′
b(t)

)
= 1

2

(−iγa ω∗

ω −iγb

)(
C ′

a(t)

C ′
b(t)

)
. (4)

The real constants γa, γb are the decay rates for the upper and lower levels, respectively. The
quantity ω characterizes the radiation–atom interaction matrix element between the levels
(ω∗ is the complex conjugate). The basic vectors of the upper (lower) level are |+〉 and |−〉 .

We remove the average effect of the decay terms by means of a nonunitary transformation
in the state space,

|ψ〉 → U(t)|ψ〉, U(t) = e�t , � = 1
4 (γa + γb). (5)

The probability amplitudes in the new representation are Ci(t) = exp(�t)C ′
i (t), i = a, b, and

the non-Hermitian Hamiltonian takes the following matrix form:

H = 1

2

(−iδ ω∗

ω iδ

)
, (6)

where δ = (γa − γb)/2.
The trace of H, equation (6), is vanishing, and the determinant of H is real, det H =

(δ2 − |ω|2)/4. Therefore, it is η-pseudo-Hermitian (η-p-Hermitian) [10]. Its matrix is a
particular case of a more general 2 × 2 traceless matrix studied in [11], where the complete
biorthonormal system {|ψi〉, |φi〉} for H and the operator η are explicitly constructed. We
reproduce this system and η (up to certain common factors) in our specific notation.

The eigenvalues Ei of H, i = 1, 2, and the related complete biorthonormal system are
given by (we consider the nondegenerate case of Ei �= 0)

E1 = −�

2
, E2 = �

2
, (7)

|ψ1〉 = 1√
2�

(−ω∗√�+iδ
|ω|√

� − iδ

)
, |ψ2〉 = 1√

2�

(
ω∗√�−iδ

|ω|√
� + iδ

)
, (8)

|φ1〉 = 1√
2�∗

(−ω∗√�∗−iδ
|ω|√

�∗ + iδ

)
, |φ2〉 = 1√

2�∗

(
ω∗√�∗+iδ

|ω|√
�∗ − iδ

)
, (9)

where � =
√

|ω|2 − δ2.

For both real and complex eigenvalues (i.e. real and complex �), the Hamiltonian (6)
satisfies the p-Hermiticity relation (3) with η given by

η =
(

1 iδω∗
|ω|2

− iδω
|ω|2 1

)
. (10)

As noted in [14], the real eigenvalues correspond to the case where the dipole interaction
is large relative to the damping effect (i.e. |ω|2 > δ2). In this case, the ordinary Rabi
frequency is replaced by the ‘pseudo-Rabi frequency’ which in our notation are |ω|/2 and
�/2 correspondingly.

In the case of � = 0 (i.e. |ω|2 = δ2), the amplitudes C ′
a, C

′
b are given by [14]

(1 − δt) exp(−�t) and (iωt/2) exp(−�t) correspondingly, where � = (γa + γb)/4. Due
to the exponential decay factor exp(−�t), any divergence [27] does not occur in our system.
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In the case of |ω|2 < δ2 the eigenvalues of H are pure imaginary, but the Hamiltonian is
still pseudo-Hermitian [14].

The PT -symmetry of our Hamiltonian (6) is considered in [14] following the method of
Bender, Brody and Jones [4]. The Parity operator P of the two-level system can be defined as
[4]

P =
(

0 1

1 0

)
,

so that P 2 = 1, P = P −1.
The generalized parity operator for the two-level systems is defined [12, 13] as

P = |φ1〉〈φ1| − |φ2〉〈φ2|, which in our case results to

P =
(

0 − ω∗
|ω|

− ω
|ω| 0

)
.

Different definitions have been introduced by Mostafazadeh [12] and Ahmed [13] for the
antilinear time-reversal operator T. As in the paper [14], we use the representation introduced
by Bender et al [4], namely,

T = K0,

where K0 is the complex conjugation operator. One has K2
0 = 1, (PT )2 = 1, and one finds

that PT commutes with H,PK0HK−1
0 P −1 = H . If one uses the generalized parity operator

P = |φ1〉〈φ1| − |φ2〉〈φ2|, then one can take T = UK0, where U is a 2 × 2 unitary diagonal
matrix, U22 = U ∗

11 = −ω/|ω|.
The generalized charge conjugation operator C for two-level system is given by the

expression [12] C = |ψ1〉〈φ1| − |ψ2〉〈φ2| , which in our case reads

C = 1

�

(
iδ −ω∗

−ω −iδ

)
= − 2

�
H.

From the last equation we deduce that C commutes with the Hamiltonian H, [C,H ] = 0.
This invariance property eliminates negative inner products [14].

Furthermore unless otherwise stated, we consider the small damping effect case of our
system, i.e. |ω|2 > δ2, that is � real (and if real it is positive). One can verify that in this
regime the operator η, equation (10), can be represented in terms of |φi〉 as

η = �

|ω| (|φ1〉〈φ1| + |φ2〉〈φ2|) ≡ �

|ω|η+. (11)

The operator η is positive definite. The notation η+ = |φ1〉〈φ1| + |φ2〉〈φ2| was introduced
by Mostafazadeh [40].

Now, let us introduce the annihilation operator b associated with the Hamiltonian H given
in equation (6),

b = 1

2�

( −|ω| −ω∗(�+iδ)
|ω|

ω(�−iδ)
|ω| |ω|

)
. (12)

Its adjoint operator reads (� is real)

b+ = 1

2�

( − |ω| ω∗(�+iδ)
|ω|

−ω(�−iδ)
|ω| |ω|

)
, (13)
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and its η-p-Hermitian adjoint b#, defined by

b# = η−1b+η, (14)

takes the form

b# = 1

2�

( −|ω| ω∗(�−iδ)
|ω|

−ω(�+iδ)
|ω| |ω|

)
. (15)

Next, we examine the properties of the operators b# and b. First is that b# and b realize a
pseudo-Hermitian generalization of the fermion algebra, namely,

b2 = b#2 = 0, {b, b#} = bb# + b#b = 1. (16)

b# and b could be called the creation and annihilation operators of p-Hermitian fermions
[41]. One can verify that they raise and lower the eigenvalues of H by a quantity � = 2E, i.e.
they act on the states |ψi〉 as follows:

b |ψ1〉 = 0, b |ψ2〉 = |ψ1〉 , (17)

b# |ψ2〉 = 0, b#|ψ1〉 = |ψ2〉, (18)

The operator b annihilates the lowest eigenstates |ψ1〉, and b# brings this state onto the upper
eigenstates |ψ2〉.

Introducing the quadratic operator N = b#b, the p-fermionic number operator, we find
the following natural anticommutation relations:

{N, b} = b {N, b#} = b#. (19)

In terms of the operators b and b#, the Hamiltonian H is factorized (up to an additive C-number
term) to a form similar to that of the free (boson) harmonic oscillator,

H = �
(
b#b − 1

2

)
. (20)

Taking the Hermitian conjugate of both sides of (20), we reaffirm the p-Hermiticity of H
(according to definition (3)):

H + = �
(
b+ηbη−1 − 1

2

)
= �ηη−1

(
b+ηbη−1 − 1

2

)
ηη−1

= ηHη−1.

The above relations confirm that b and b# are lowering and raising operators for the
two-level p-Hermitian system (with real eigenvalues) and can be regarded as p-fermionic
annihilation and creation operators. This is consistent with the limit δ = 0, corresponding to
a Hermitian Hamiltonian, when η = 1 and b# = b+, i.e. the p-Hermitian generalization of the
fermion algebra reduces to the usual fermion algebra. Quantum system with Hamiltonian of
the form (20) should be referred to as p-fermionic oscillator.

3. Pseudo-fermionic coherent states

Having introduced the p-fermion lowering and raising operators, we now embark on the
construction of the p-fermionic coherent states (CS) for our system described by p-Hermitian
Hamiltonian H given in equation (6). We shall follow as closely as possible the scheme of
fermionic CS developed in papers [33–35, 37], generalizing it to the p-fermion case. For the
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reader convenience, we begin with a brief reminder of the properties of complex Grassmann
variables [33, 35–37], denoted here as ξ and ξ ∗.

The complex Grassmannian variables ξi and their complex conjugates ξ ∗
i satisfy the

anticommutation relations:

{ξi, ξj } = ξiξj + ξj ξi = 0, (21)

{ξ ∗
i , ξj } = 0, {ξ ∗

i , ξ ∗
j } = 0. (22)

ξi’s anticommute with b and b#,

{ξi, b} = 0, {ξ ∗
i , b} = 0, {ξi, b

#} = 0, (23)

and have the following properties:

ξ |ψ1〉 = |ψ1〉ξ, ξ |ψ2〉 = −|ψ2〉, (24)

ξ |φ1〉 = |φ1〉ξ, ξ |φ2〉 = −|φ2〉ξ. (25)

The pseudo-Hermitian conjugation reverses the order of all fermionic quantities, both the
operators and the Grassmann variables:

(b#ξi + ξ ∗
i b)# = ξ ∗

i b + b#ξi . (26)

The Grassmann integration and differentiation over the complex Grassmann variables are
given by∫

dξ1 = 0,

∫
dξξ = 1,

∫
dξ ∗1 = 0,

∫
dξ ∗ξ ∗ = 1, (27)

d

dξ
1 = 0,

d

dξ
ξ = 1,

d

dξ ∗ 1 = 0,
d

dξ ∗ ξ ∗ = 1. (28)

The Grassmann integration of any function is equivalent to the left differentiation∫
dξ f (ξ) = ∂

∂ξ
f (ξ). (29)

We define the displacement operators D(ξ) for any set of complex Grassmannian variables
ξ in the following way:

D(ξ) = exp(b#ξ − ξ ∗b) (30)

= 1 + b#ξ − ξ ∗b +
(
b#b − 1

2

)
ξ ∗ξ. (31)

The pseudo-Hermitian adjoint D# is given by

D#(ξ) = exp
(
ξ ∗b − b#ξ

)
(32)

= 1 + ξ ∗b − b#ξ +
(
b#b − 1

2

)
ξ ∗ξ. (33)

These two operators satisfy the following displacement relation:

D#(ξ)bD(ξ) = b + ξ.

Using the explicit formulae of D and D#, and the anticommutation relations between
operators b, b# and Grassmann variable ξ , we establish that D(ξ) are pseudo-unitary:
D#(ξ)D(ξ) = 1 = D(ξ)D#(ξ).
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We now define the pseudo-fermionic coherent states (p-fermionic CS) |ξ 〉 as eigenstates
of the annihilation operator b,

b |ξ 〉 = ξ |ξ 〉 . (34)

The eigenvalue ξ is a complex Grassmannian variable.
The Hermitian adjoint of the CS (the bra-vector) is 〈ξ | and it is left eigenstate of

b†, 〈ξ |b† = 〈ξ |ξ ∗. In order to meet the alternative relation η〈ξ |b# = η〈ξ |ξ ∗, one has to
define η〈ξ | ≡ (|ξ 〉)# := 〈ξ |η.

Similarly to the cases of Glauber bosonic CS [28] and of fermionic CS [33] our p-fermion
eigenstates |ξ 〉 can be constructed from the lowest (ground) eigenstate |ψ1〉 of the Hamiltonian
H, acting on it by the pseudo-unitary operator D(ξ):

|ξ 〉 = D(ξ) |ψ1〉 . (35)

By using the formula (31) for the displacement operator, we may write the state |ξ 〉 in the form

|ξ 〉 = exp
(− 1

2ξ ∗ξ
)
(|ψ1〉 − ξ |ψ2〉). (36)

The Hermitian adjoint of the CS is

〈ξ | = 〈ψ1| | D†(ξ) (37)

= exp
(− 1

2ξ ∗ξ
)
(〈ψ1| + ξ ∗〈ψ2|), (38)

and the inner product 〈ξ |ξ 〉 is

〈ξ |ξ 〉 = 〈ψ1|ψ1〉 + (〈ψ2|ψ2〉 − 〈ψ1|ψ1〉)ξ ∗ξ − 2i Im(ξ 〈ψ1|ψ2〉), (39)

so that |ξ 〉 are not normalized.
Now we have to examine the set {|ξ 〉} for (over)completeness. One can straightforwardly

check (using the rules (21)–(27)) that neither the integral (against the measure dξ ∗dξ ) of the
Hermitian |ξ 〉〈ξ | nor the integral of p-Hermitian |ξ 〉η〈ξ | (unnormalized) projectors result in
the identity operator:∫

dξ ∗ dξ |ξ 〉〈ξ | �= 1,

∫
dξ ∗ dξ |ξ 〉η〈ξ | �= 1. (40)

The way out of this impasse is suggested by the known transition from ‘orthonormal
system’ of eigenstates of Hermitian H to the ‘biorthonormal system’ of states of p-Hermitian
H. With this idea in mind, we introduce another continuous family of states, namely the
eigenstates |̃ξ 〉 of the operator b̃, that annihilates the dual state |φ1〉,

b̃|̃ξ 〉 = ξ |̃ξ 〉, b̃ = ηbη−1. (41)

Operator b̃ is nilpotent, b̃2 = 0 and anticommutes with b†. Representing b† = ηb̃†η−1, we see
that b† is η′-p-Hermitian adjoint to b̃, η′ = η−1. Denoting this pseudo-conjugation by #′ we
obtain the pair of p-fermionic operators b̃ and b̃#′,

b̃b̃#′ + b̃#′b̃ = 1, b̃2 = (b̃#′)2 = 0. (42)

In view of the p-fermionic algebra (42), we introduce new displacement operators

D̃(ξ) = exp(b̃#′ξ − ξ ∗b̃), D̃#′(ξ)b̃D̃(ξ) = b̃ + ξ,

and construct eigenstates of b̃ according to the above-described scheme (see equations (35),
(36)),

|̃ξ 〉 = D̃(ξ)|φ1〉 (43)

= exp
(− 1

2ξ ∗ξ
)
(|φ1〉 − ξ |φ2〉) . (44)
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The scalar product between 〈̃ξ |ξ̃ 〉 takes the form

〈̃ξ |ξ̃ 〉 = 〈φ1|φ1〉 + (〈φ2|φ2〉 − 〈φ1|φ1〉)ξ ∗ξ − 2i Im(ξ 〈φ1|φ2〉), (45)

while

〈̃ξ |ξ 〉 = |ω|
�

〈ξ |η|ξ 〉 = 1,

or, more generally,

〈ξ |ζ̃ 〉 = 〈ψ1|D†(ξ)D̃(ζ )|φ1〉 = ξ ∗ζ + 1
4 (2 − ξ ∗ξ)(2 − ζ ∗ζ ). (46)

By means of the two types of states |ξ 〉 and |̃ξ 〉 the resolution of the identity is realized in
the following way:

1 =
∫

dξ ∗ dξ |ξ 〉〈̃ξ | =
∫

dξ ∗ dξ |̃ξ 〉〈ξ |. (47)

Equations (47) can be easily verified using the expansions of |ξ 〉 and |̃ξ 〉 in terms of |ψi〉 and
|φi〉 (equations (36) and (44)) and the rules of permutation and integration (21)–(27).

We have obtained that the system of one-mode p-fermionic CS consists of two subsets,
namely {|ξ 〉} and {|ξ̃ 〉}. In view of (45) and (46) this continuous system should be called
bi-normalized and bi-overcomplete or shortly system of bi-normal CS. Similarly, the two sets
of pseudo-unitary operators D(ξ), D̃(ξ) should be called bi-unitary:

D(ξ)D̃†(ξ) = 1 = D̃†(ξ)D(ξ).

Note that D(ξ) is η-pseudo-unitary, while D̃(ξ) is η′-pseudo-unitary with η′ = η−1.

4. Time evolution of p-fermionic coherent states

A given parametric set of states is said to be realizable for a physical system if the time
evolution |ψ; t〉 of any initial state |ψ〉 from the set, governed by the Hamiltonian, leaves
the state in the set [42]. In other words |ψ; t〉, for any t, obeys the defining criteria of the
set. In such a case one shortly says that the time evolution (of the parametric set of states)
is stable [42]. In Hermitian mechanics, this means that the time dependence of the states is
included, up to a phase factor, in the state parameters. For example, the time evolution |α; t〉
of Glauber CS |α〉 [28] is stable with respect to the harmonic oscillator evolution operator
exp(−iHt),H = ω(a†a + 1/2):

|α; t〉 = e−iωt/2|α(t)〉, a|α; t〉 = α(t)|α(t)〉, α(t) = α e−iωt . (48)

In the case of our p-fermionic CS {|ξ 〉, |̃ξ 〉}, the set parameter is the complex Grassmann
variable ξ , the eigenvalue of the p-fermionic lowering operators b or b̃. The time evolution
is stable if the evolved states |ξ ; t〉 and |̃ξ ; t〉 remain eigenstates of the operators b and b̃,
respectively,

b|ξ ; t〉 = ξ(t)|ξ ; t〉, b̃|̃ξ ; t〉 = ξ(t)|̃ξ ; t〉. (49)

This implies that the time-evolved CS |ξ ; t〉 and |̃ξ ; t〉 should form bi-normal and bi-
overcomplete system.

Let us first consider the time evolution of an initial CS |ξ 〉. Clearly, we have
|ξ ; t〉 = exp(−iHt)|ξ 〉, |ξ ; 0〉 ≡ |ξ 〉. Using the form (36) of |ξ 〉 and the facts that |ψ1,2〉
are eigenstates of H (with eigenvalues E1,2), we get

|ξ ; t〉 = e−iE1t
(
1 − 1

2ξ ∗ξ
) |ψ1〉 − e−iE2t ξ |ψ2〉. (50)
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Taking into account that E1 = −�/2 ≡ −E and E2 = �/2 ≡ E, we put ξ(t) = e−i2Etξ and
rewrite the last equation in the form

|ξ ; t〉 = eiEt
[(

1 − 1
2ξ(t)∗ξ(t)

) |ψ1〉 − ξ(t)|ψ2〉
] = eiEt |ξ(t)〉. (51)

which manifests the stability of the time evolution of CS |ξ 〉. Note that the overall time-
dependent factor exp(iEt) is a phase factor since Ei are real.

In a similar manner, we establish that the time evolution |̃ξ ; t〉 of an initial |̃ξ 〉 is stable
(remains eigenstate of b̃):

|̃ξ ; t〉 = exp(−iH †t)|̃ξ 〉
= exp(−iE1t)

(
1 − 1

2ξ ∗ξ
) |φ1〉 − exp(−iE2t)ξ |φ2〉

= exp(iEt)
((

1 − 1
2ξ(t)∗ξ(t)

) |φ1〉 − ξ(t)|φ2〉
) = exp(iEt)|̃ξ(t)〉. (52)

The results (51) and (52) reveal the bi-normality and bi-overcompleteness of the family of time-
evolved states {|ξ ; t〉, |̃ξ ; t〉} of the p-fermionic oscillator system (20 ): one has 〈t; ξ |̃ξ ; t〉 = 1,
and

1 =
∫

dξ ∗ dξ |ξ ; t〉〈̃t; ξ | =
∫

dξ ∗ dξ |̃ξ ; t〉〈t; ξ |. (53)

We observe that here the time-evolved states |ξ ; t〉 and |̃ξ ; t〉 differ from CS |ξ(t)〉 and |̃ξ(t)〉
in phase factors only. In more general cases, the overall factors N (t) and Ñ (t) ascribed in the
stable evolution of bi-normal and bi-overcomplete system of states could not be phase factors,
but their product should equal unity, N ∗(t)Ñ (t) = 1.

Finally, we have to note that a complementary bi-normal and bi-overcomplete system
of states can be constructed, in a symmetrical manner using the operators b# and b̃#, that
annihilate the ‘upper level states’ |ψ2〉 and |φ2〉.

5. Concluding remarks

In this paper, we have generalized the fermionic coherent states (CS) for two-level systems
described by pseudo-Hermitian Hamiltonian with real spectrum. Unlike the standard bosonic
and fermionic cases the system of pseudo-fermionic (p-fermionic) CS consists of two subsets,
which are bi-normalized and bi-overcomplete. In this sense, the system of p-fermionic CS
can be regarded as a continuous analogue of the biorthonormal system of discrete eigenstates
of p-Hermitian H. The two subsets are built up as eigenstates of the p-fermion annihilation
operators b and b̃ = ηbη−1, where η is the Hermitian operator that ensures the p-Hermiticity of
the Hamiltonian, H = η−1H †η. In terms of b and b# = η−1b†η, the Hamiltonian is factorized
to the form of p-fermionic oscillator, equation (20).

The evolution of the p-fermionic CS governed by the p-Hermitian two-level Hamiltonian
(6) is shown to be time stable—the evolved states remain eigenstates of the p-fermionic
annihilation operators, preserving the bi-normality and bi-overcompleteness of the system at
later time. In the Hermitian limit of η = 1 (that is δ = 0 in (6)), our p-fermionic CS and all
related formulae recover standard fermionic CS of [33, 34]. Time evolution of fermionic CS
for a Pauli spin in a slowly varying magnetic field was examined by Abe [35] (see also the
comment [36]).
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